Multipole Matrix of Green Function of Laplace Equation
نویسندگان
چکیده
منابع مشابه
Multipole expansion solution of the Laplace equation using surface data
This paper provides a computational method to model a three-dimensional static electromagnetic field within a finite source free volume starting from discrete field information on its surface. The method uses the Helmholtz vector decomposition theorem and the differential algebraic framework of COSY INFINITY to determine a solution to the Laplace equation. The solution is locally expressed as a...
متن کاملinterpersonal function of language in subtitling
translation as a comunicative process is always said to be associated with various aspects of meaning loss or gain. subtitling as a mode of translating, due to special discoursal and textual conditions imposed upon it, is believed to be an obvious case of this loss or gain. presenting the spoken sound track of a film in writing and synchronizing the perception of this text by the viewers with...
15 صفحه اولgreen's function operator matrix of intraplate faults
this research presents a numerical tool to estimate the green's function operator matrix of intraplate faults. having this matrix and its inverse, spatial distribution of fault slippage could be investigated through the inverse analysis of geodetic data. this information could be employed to predict the location of future powerful earthquakes. to implement fault sliding in fe calculations,...
متن کاملdeterminant of the hankel matrix with binomial entries
abstract in this thesis at first we comput the determinant of hankel matrix with enteries a_k (x)=?_(m=0)^k??((2k+2-m)¦(k-m)) x^m ? by using a new operator, ? and by writing and solving differential equation of order two at points x=2 and x=-2 . also we show that this determinant under k-binomial transformation is invariant.
15 صفحه اولThe Laplace Equation
Definition 1. Among the most important and ubiquitous of all partial differential equations is Laplace’s Equation: ∆u = 0, where the Laplacian operator ∆ acts on the function u : U → R (U is open in R) by taking the sum of the unmixed partial derivatives. For example: n = 1: ∆u = ∂ 2u ∂x2 = u = 0 In this simple case, the solution u = ax + b is found by integrating twice. n = 2: ∆u = ∂ 2u ∂x1 + ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Physica Polonica B
سال: 2015
ISSN: 0587-4254,1509-5770
DOI: 10.5506/aphyspolb.46.1487